3,591 research outputs found

    Brownian scattering of a spinon in a Luttinger liquid

    Get PDF
    We consider strongly interacting one-dimensional electron liquids where elementary excitations carry either spin or charge. At small temperatures a spinon created at the bottom of its band scatters off low-energy spin- and charge-excitations and follows the diffusive motion of a Brownian particle in momentum space. We calculate the mobility characterizing these processes, and show that the resulting diffusion coefficient of the spinon is parametrically enhanced at low temperatures compared to that of a mobile impurity in a spinless Luttinger liquid. We briefly discuss that this hints at the relevance of spin in the process of equilibration of strongly interacting one-dimensional electrons, and comment on implications for transport in clean single channel quantum wires

    Interaction-induced backscattering in short quantum wires

    Get PDF
    We study interaction-induced backscattering in clean quantum wires with adiabatic contacts exposed to a voltage bias. Particle backscattering relaxes such systems to a fully equilibrated steady state only on length scales exponentially large in the ratio of bandwidth of excitations and temperature. Here we focus on shorter wires in which full equilibration is not accomplished. Signatures of relaxation then are due to backscattering of hole excitations close to the band bottom which perform a diffusive motion in momentum space while scattering from excitations at the Fermi level. This is reminiscent to the first passage problem of a Brownian particle and, regardless of the interaction strength, can be described by an inhomogeneous Fokker-Planck equation. From general solutions of the latter we calculate the hole backscattering rate for different wire lengths and discuss the resulting length dependence of interaction-induced correction to the conductance of a clean single channel quantum wire.Comment: 10 pages, 4 figure

    Cross-border Movement of Patients in the EU: A Re-Appraisal

    Get PDF
    The national welfare state, so it seems, has come under attack by European integration. This article focuses on one facet of the welfare state, that is, healthcare and on one specific dimension, that is, cross-border movement of patients. The institution which has played a pivotal role in the development of the framework regulating the migration of patients is the European Court of Justice (ECJ). The Court’s activity in this sensitive area has not remained without critics. This was even more so since the Court invoked Treaty (primary) law which not only has made it difficult to overturn case law but also has left the legislator with very little room for manoeuvre in relation to any future (secondary) EU law. What is therefore of special interest in terms of legitimacy is the legal reasoning by which the Court has made its contribution to the development of this framework. This article is a re-appraisal of the legal development in this field

    Eversion, Ecology, Touch, and Rain: A Post-Pc Rhetoric

    Get PDF
    The post-PC era of computing offers digital rhetors an opportunity to innovate their inventional approaches. The new era is one in which an ecology of networked, distributed, sensor-based devices amplify our perceptions of self and world by changing the ecological relations that define our connections to our techno-social environments. By extending Casey Boyle’s posthuman practice of rhetorical invention to the new computational era, rhetoricians can develop digital interactive projects that move participants by amplifying the choric bases of their perceptions of self and world

    Modeling Dual Pathways for the Metazoan Spindle Assembly Checkpoint

    Get PDF
    Using computational modelling, we investigate mechanisms of signal transduction focusing on the spindle assembly checkpoint where a single unattached kinetochore is able to signal to prevent cell cycle progression. This inhibitory signal switches off rapidly once spindle microtubules have attached to all kinetochores. This requirement tightly constrains the possible mechanisms. Here we investigate two possible mechanisms for spindle checkpoint operation in metazoan cells, both supported by recent experiments. The first involves the free diffusion and sequestration of cell-cycle regulators. This mechanism is severely constrained both by experimental fluorescence recovery data and also by the large volumes involved in open mitosis in metazoan cells. Using a simple mathematical analysis and computer simulation, we find that this mechanism can generate the inhibition found in experiment but likely requires a two stage signal amplification cascade. The second mechanism involves spatial gradients of a short-lived inhibitory signal that propagates first by diffusion but then primarily via active transport along spindle microtubules. We propose that both mechanisms may be operative in the metazoan spindle assembly checkpoint, with either able to trigger anaphase onset even without support from the other pathway.Comment: 9 pages, 2 figure

    Scattering of rare-gas atoms at a metal surface: evidence of anticorrugation of the helium-atom potential-energy surface and the surface electron density

    Full text link
    Recent measurements of the scattering of He and Ne atoms at Rh(110) suggest that these two rare-gas atoms measure a qualitatively different surface corrugation: While Ne atom scattering seemingly reflects the electron-density undulation of the substrate surface, the scattering potential of He atoms appears to be anticorrugated. An understanding of this perplexing result is lacking. In this paper we present density functional theory calculations of the interaction potentials of He and Ne with Rh(110). We find that, and explain why, the nature of the interaction of the two probe particles is qualitatively different, which implies that the topographies of their scattering potentials are indeed anticorrugated.Comment: RevTeX, 4 pages, 10 figure

    Endstates in multichannel spinless p-wave superconducting wires

    Get PDF
    Multimode spinless p-wave superconducting wires with a width W much smaller than the superconducting coherence length \xi are known to have multiple low-energy subgap states localized near the wire's ends. Here we compare the typical energies of such endstates for various terminations of the wire: A superconducting wire coupled to a normal-metal stub, a weakly disordered superconductor wire and a wire with smooth confinement. Depending on the termination, we find that the energies of the subgap states can be higher or lower than for the case of a rectangular wire with hard-wall boundaries.Comment: 10 pages, 7 figure

    Statistical periodicity in driven quantum systems: General formalism and application to noisy Floquet topological chains

    Full text link
    Much recent experimental effort has focused on the realization of exotic quantum states and dynamics predicted to occur in periodically driven systems. But how robust are the sought-after features, such as Floquet topological surface states, against unavoidable imperfections in the periodic driving? In this work, we address this question in a broader context and study the dynamics of quantum systems subject to noise with periodically recurring statistics. We show that the stroboscopic time evolution of such systems is described by a noise-averaged Floquet superoperator. The eigenvectors and -values of this superoperator generalize the familiar concepts of Floquet states and quasienergies and allow us to describe decoherence due to noise efficiently. Applying the general formalism to the example of a noisy Floquet topological chain, we re-derive and corroborate our recent findings on the noise-induced decay of topologically protected end states. These results follow directly from an expansion of the end state in eigenvectors of the Floquet superoperator.Comment: 13 pages, 5 figures. This is the final, published versio

    Error analysis for mesospheric temperature profiling by absorptive occultation sensors

    No full text
    International audienceAn error analysis for mesospheric profiles retrieved from absorptive occultation data has been performed, starting with realistic error assumptions as would apply to intensity data collected by available high-precision UV photodiode sensors. Propagation of statistical errors was investigated through the complete retrieval chain from measured intensity profiles to atmospheric density, pressure, and temperature profiles. We assumed unbiased errors as the occultation method is essentially self-calibrating and straight-line propagation of occulted signals as we focus on heights of 50?100 km, where refractive bending of the sensed radiation is negligible. Throughout the analysis the errors were characterized at each retrieval step by their mean profile, their covariance matrix and their probability density function (pdf). This furnishes, compared to a variance-only estimation, a much improved insight into the error propagation mechanism. We applied the procedure to a baseline analysis of the performance of a recently proposed solar UV occultation sensor (SMAS ? Sun Monitor and Atmospheric Sounder) and provide, using a reasonable exponential atmospheric model as background, results on error standard deviations and error correlation functions of density, pressure, and temperature profiles. Two different sensor photodiode assumptions are discussed, respectively, diamond diodes (DD) with 0.03% and silicon diodes (SD) with 0.1% (unattenuated intensity) measurement noise at 10 Hz sampling rate. A factor-of-2 margin was applied to these noise values in order to roughly account for unmodeled cross section uncertainties. Within the entire height domain (50?100 km) we find temperature to be retrieved to better than 0.3 K (DD) / 1 K (SD) accuracy, respectively, at 2 km height resolution. The results indicate that absorptive occultations acquired by a SMAS-type sensor could provide mesospheric profiles of fundamental variables such as temperature with unprecedented accuracy and vertical resolution. A major part of the error analysis also applies to refractive (e.g., Global Navigation Satellite System based) occultations as well as to any temperature profile retrieval based on air density or major species density measurements (e.g., from Rayleigh lidar or falling sphere techniques)

    Disorder induced local density of states oscillations on narrow Ag(111) terraces

    Full text link
    The local density of states of Ag(111) has been probed in detail on disordered terraces of varying width by dI/dV-mapping with a scanning tunneling microscope at low temperatures. Apparent shifts of the bottom of the surface-state band edge from terrace induced confinement are observed. Disordered terraces show interesting contrast reversals in the dI/dV maps as a function of tip-sample voltage polarity with details that depend on the average width of the terrace and the particular edge profile. In contrast to perfect terraces with straight edges, standing wave patterns are observed parallel to the step edges, i.e. in the non-confined direction. Scattering calculations based on the Ag(111) surface states reproduce these spatial oscillations and all the qualitative features of the standing wave patterns, including the polarity-dependent contrast reversals.Comment: 19 pages, 12 figure
    • …
    corecore